

Clinical Trials in older patients with colorectal cancer: The French Initiative

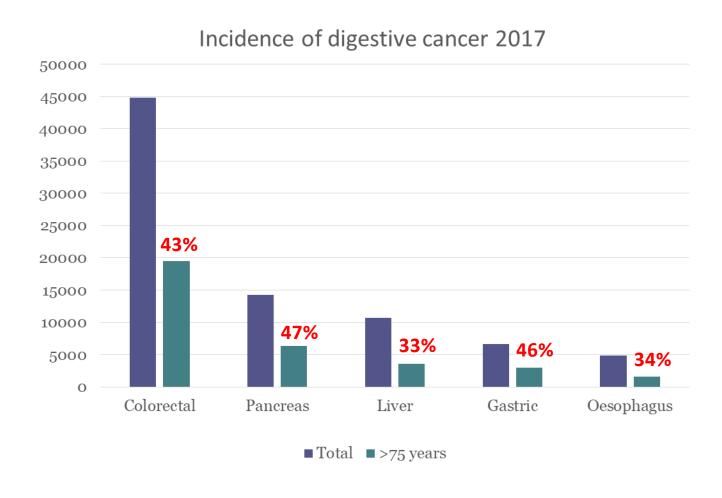
Pr Thomas Aparicio

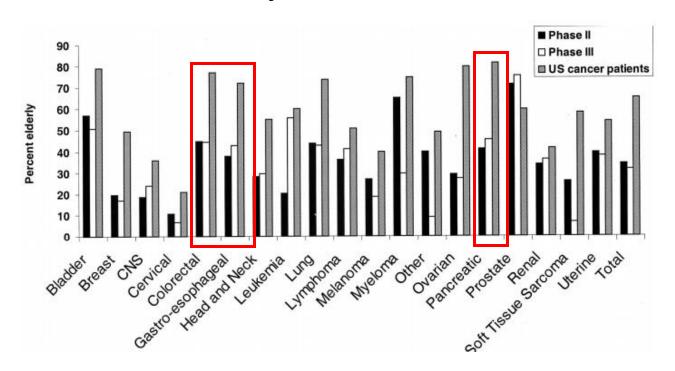
Service de Gastroenterologie & Oncologie Digestive Hôpital Saint-Louis Paris

thomas.aparicio@aphp.fr

Journée DIALOG

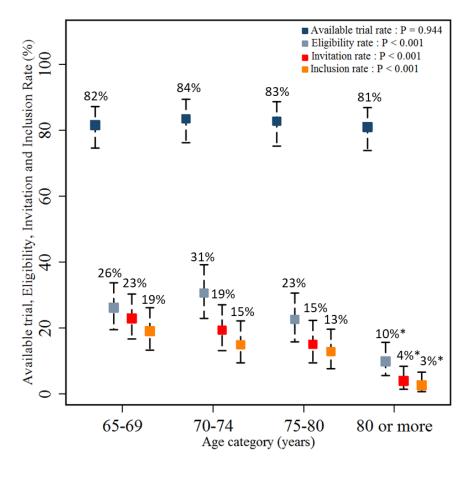
05/05/2025




Incidence of GI cancers by age group

34 to 47% of GI cancers are diagnosed in patients aged >75 yrs

Under-representation of older patients in clinical trials


Pts > 65 yrs in clinical trials

Exclusion criteria on age, second cancer, health status, organ dysfunction

SAGE prospective study

Inclusions of pts > 65 yrs in colorectal cancer trials in France (2012-2016)

Treatment differences by age

All colorectal cancers diagnosed in France in 2009 (n=41,342; median age 72 yrs)

Doat S et al. Eur J Cancer 2014; 50: 1276-83	<75 years	≥75 years	р
Localized stage, %	80.5	79.5	
Resection, %	83	82.5	0.52
Median time to surgery, days	23	8	<0.0001
Adjuvant chemotherapy, %	29	15	<0.0001
Type of chemotherapy, % Fluoropyrimidines FOLFOX	20.5 79.5	58 41	<0.0001 <0.0001
Metastatic stage, %	19.5	20.5	
First line chemotherapy, %	85	48	<0.0001
Type of treatment (%) Fluoropyrimidine Oxali-FU IrinotecanFU Cetuximab-Chemotherapy Bevacizumab-Chemotherapy	10 34 6 9 35	30 31 11 4 20	<0.0001 0.1 <0.0001 <0.0001 <0.0001

Which treatment?

QUESTIONS:

- Will the patient die of his cancer or with his cancer?
- Is the patient at risk of complications due to cancer?
- Is the patient able to tolerate cancer treatments?
- Need for geriatric evaluation & specific management?

INCa recommendations

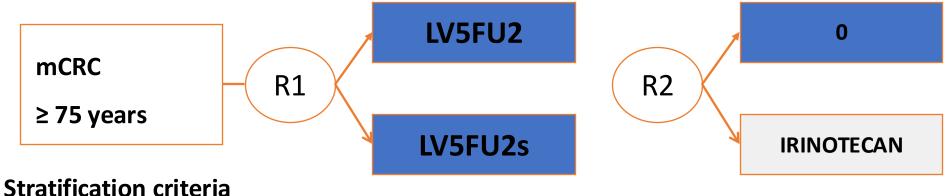
Oncogeriatry = priority of cancer plan 2009-2013

- Improve training of health care professionals to manage elderly patients >75 years
- Make sure there is a sufficient number of trained medical and paramedical health care professionals
- Obtain that all cancer patients aged >75 years have a geriatric evaluation prior to any treatment decision
- Inform population and health care professionals of factors favouring cancer in elderly patients
- Favor cooperation between oncologists and geriatricians → UCOG

There is a need for specific trials in geriatric population

Metastatic colorectal cancer

- Doublet or single drug regimen?
- Targeted therapy?


Localized colon cancer

- Adjuvant doublet or single drug regimen?
- Observation?

FFCD 2001-02 phase III study design

- Center
- Charlson index (0 vs 1-2 vs 3+)
- Karnofsky index (100 vs 90-80 vs 70-60)
- Previous adjuvant CT
- Sex
- Age (< 80 vs. ≥ 80 yrs)
- Alkaline phosphatases (≤ 2N vs. > 2N)

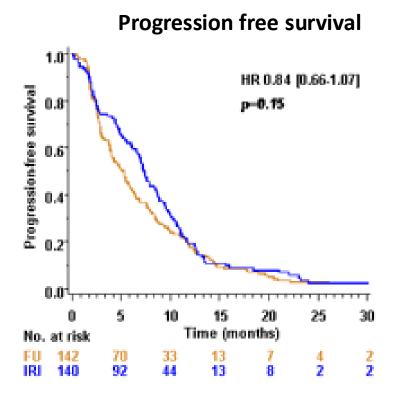
Still some eligibility limitations

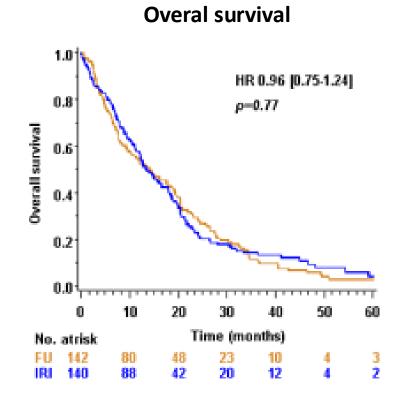
- Karnofsky index ≥60
- Adequate organ and bone marrow function
- Creatinin clearance ≥ 45 ml/min (Cockroft)

Irinotecan

- **150 mg/m²** for C1 and C2
- **180 mg/m²** ≥ C3 if toxicity ≤ grade 2 (except. alopecia)

Limited geriatric assessment

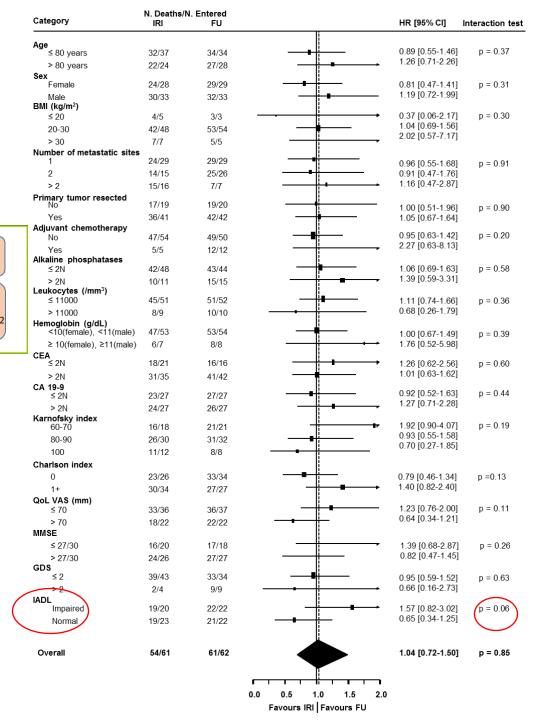

- Visual analogic QoL scale
- MMSE, IADL, GDS
- But no nutritional assessment


Funding: PFIZER

FFCD 2001-02: findings

282 patients randomized from 2003 to 2010: 7 years of recruitment

Intensification of chemotherapy in first line does'nt improve overall survival


FFCD 2001-02 trial

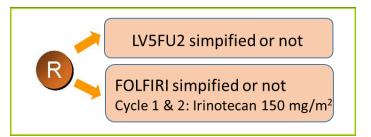
Others findings

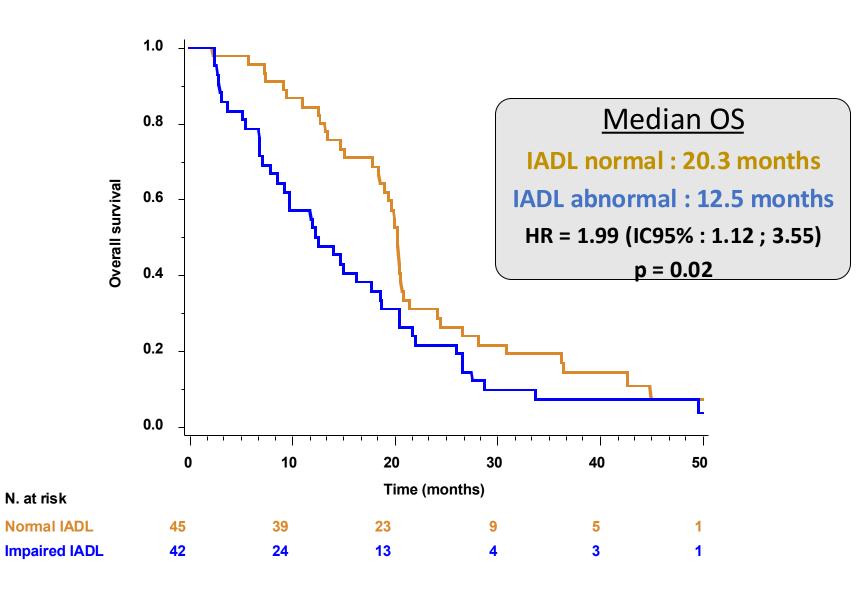
LV5FU2 simpified or not

FOLFIRI simpified or not Cycle 1 & 2: Irinotecan 150 mg/m²

Overall survival subgroup analysis

Patients with normal IADL have a greater benefit of irinotecan-based chemotherapy


Aparicio T, Eur J Cancer 2017



IADL score at inclusion predicts overall survival

FFCD 2001-02 trial

Others findings

Geriatric factors predict toxicity

FFCD 2001-02 trial Others findings

Factors predicting toxicity grade 3-4	OR	р
Chemotherapy with irinotecan	5,03	0.006
Impaired cognitive functions (MMSE ≤27/30)	3,84	0.019
Impaired autonomy (IADL<8/8)	4,67	0.011

Concordant findings of FFCD 2001-02 with others trials

Publication	Chemotherapy	Objective response	PFS (months)	OS (months)
Seymour M, Lancet 2011	5FU ou capécitabine	13%	HR: 0,84 (0,69-1,01)	HR: 0,99 (0,81-1,18)
	FOLFOX ou CAPOX	35% p<0,0001		
Hong YS, Am J Clin Oncol 2013	Capécitabine	22%	4,4	14,2
	Capécitabine + oxaliplatine	35% p=0,217 OR: 0,54 (0,20-1,45)	6,6 p=0,335 HR: 1,33 (0,74-2,37)	11 p=0,106 HR: 0,67 (0,41-1,10)
Aparicio T, Ann Oncol 2016	5FU	21%	5,2	14,2
	5FU + irinotecan	41% p=0,0003	7,3 p=0,15 HR : 0,84 (0,66-1,07)	13,3 p=0,77 HR: 0,96 (0,75-1,24)

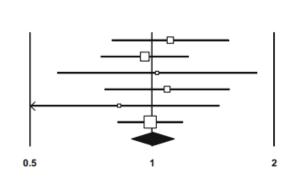
Median age

74 years

Worst tolerance of capecitabine

80 years

Meta-analysis


PFS: doublet CT > FU HR = 0.82 (0,72–0,93)

No difference in OS

HR = 1,00 (0,89-1,13)

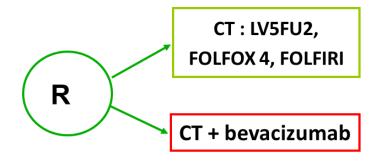
	Statistics for each study				
	Hazard ratio	Lower limit	Upper limit	Z-Value	p-Value
Folprecht, 2008	1.110	0.795	1.550	0.613	0.540
Mitry, 2013	0.960	0.747	1.234	-0.318	0.750
	1.030	0.583	1.820	0.102	0.919
Venderbosch, 2012	1.090	0.763	1.557	0.474	0.636
Ducreux, 2011	0.830	0.469	1.469	-0.640	0.522
De Gramont, 2000	0.990	0.821	1.194	-0.105	0.916
Seymour, 2011	1.003	0.888	1.133	0.048	0.962

Statistics for each study

Hazard ratio and 95% CI

Favours Bitherapy Fa

Favours Monotherapy


Conclusions of trials evaluating doublet vs monochemotherapy

- Doublet chemotherapy doesn't improve overall survival in front line
- Some geriatric parameters may predict efficacy and toxicity
- These findings could not have been established without specific trial on older and frail patients
- Concern: patient enrolled in specific trials are fit enough to received a doublet chemotherapy (mandatory to be enrolled) but have probably some frailty → super fit and super frail are under-represented
- Findings from specific cohorts with geriatric evaluation may add findings in unselected patients

Specific trials to evaluate targeted therapy Randomized phase II: PRODIGE 20

102 patients enrolled from 2011 to 2013

Composite end-point at 4 months: efficacy co-criterion: tumor control (stable disease or objective response) and no decrease ≥ 2 points of the Spitzer QoL index; and safety co-criterion: absence of severe cardiovascular toxicities defined by arterial hypertension grade 4 or thromboembolic event grade 3-4 or cardiac insufficiency grade 3-4 or an unexpected hospitalization

Eligibility limitations

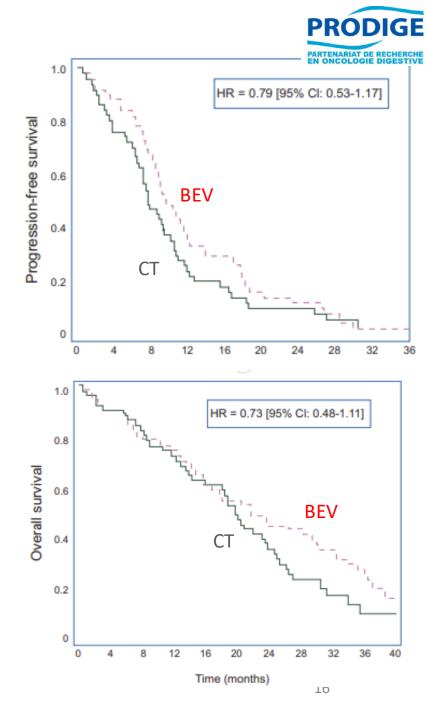
- ECOG < 2,
- Adequate organ and bone marrow function
- No uncontrolled hypertension, myocardial infarction, cardiac insufficiency, stroke, arterial ischemia grade>2, pulmonary embolism

Geriatric parameters mandatory

- G8, Spitzer QoL scale, MMSE, IADL, ADL, mini-GDS, mini-Cog, MNA-SF, RFQ, social support
- Geriatrician consultation not mandatory

Funding: PHRC

PRODIGE 20: findings

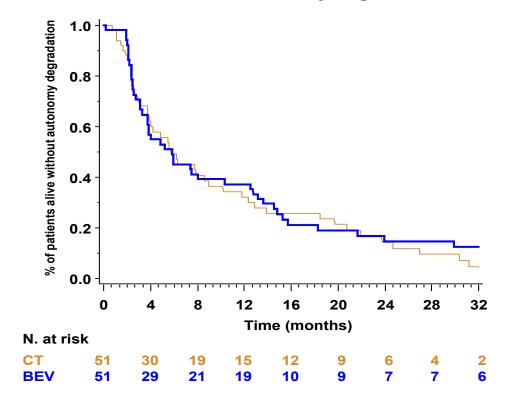

PFS

OS

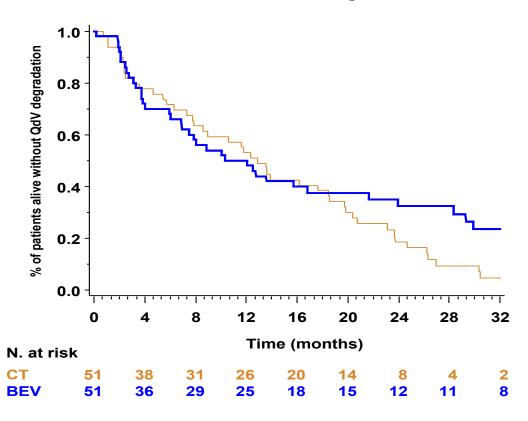
Hypothesis: efficacy co-criterion >20% of the patients and a safety co-criterion >40%

Table 2. Primary end point assessed 4 months after randomization				
Primary end point	CT N = 45	BEV N = 46		
Tumor controlled	33 (73.3%)	36 (78.3%)		
No QoL degradation >2	29 (64.4%)	27 (58.7%)		
Efficacy co-criterion reached	26 (57.8%)	23 (50.0%)		
No unexpected hospitalization	32 (71.1%)	30 (65.2%)		
No grade 3-4 cardiovascular toxicity	41 (91.1%)	40 (87.0%)		
Safety co-criterion reached	32 (71.1%)	28 (60.9%)		
Both efficacy and safety end point reached	21 (46.7%)	16 (34.8%)		

Aparicio T et al. Ann Oncol 2018



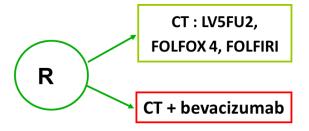
PRODIGE 20: other findings

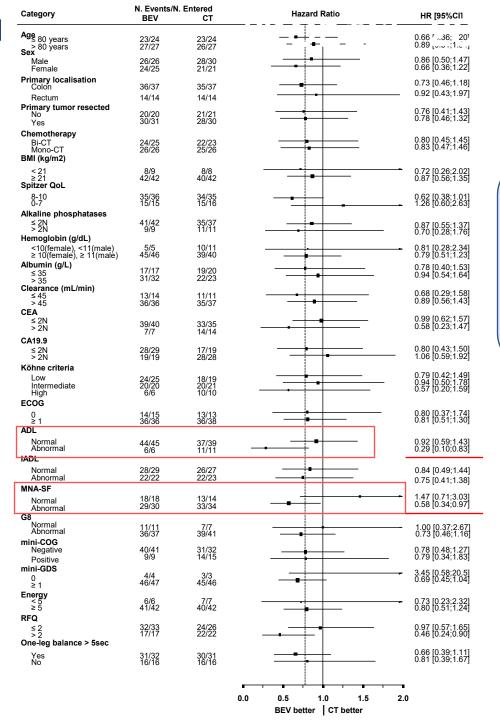


17

Survival without autonomy degradation

Survival without QoL degradation




Questionary are poorly fulfilled during long follow-up

Bevacizumab is efficient and well tolerated in older patients and did not produce autonomy or QoL degradation

PRODIGE 20 trial

PFS subgroup analysis

bevacizumab is significantly associated with prolonged PFS in patients with impaired nutritional status and ADL

Multivariate analysis:

- for primary endpoint: normal IADL and no previous cardiovascular disease.
- **For PFS**: Köhne score
- For OS: Kohne score, QoL, low albumin, CA 19-9>2N,

Aparicio T et al, Eur J Cancer 2018

Randomized trials in 1st line with bevacizumab in older patients

Publication	Chemotherapy	Objective response	PFS, months	OS, months
Cunningham D, Lancet Oncol 2013	Capécitabine	10%	5,1	16,8
	Capécitabine + bévacizumab	19% p=0,042	9,1 p<0,001 HR :(0,53)(0,41-0,69)	20,7 p=0,182 HR:(0,79)(0,57-1,09)
Price T, Ann Oncol 2012	Capécitabine	28%	5,6	13,4
	Capécitabine + bévacizumab	23%	8,8 p<0,001 HR :(0,53)(0,32-0,86)	15,7 p=0,41 HR (0,80)(0,47-1,36)
Aparicio T, Ann Oncol 2018	5FU +/- oxali. ou irino.	32,6%	7,8	19,8
	Idem + bévacizumab	37,2%	9,7 HR (: 0,78)(0,53-1,17)	21,7 HR: (0,73 (0,48-1,11)

Meta-analysis

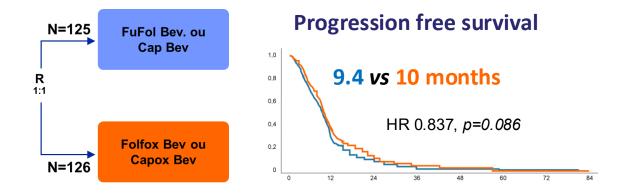
PFS: CT + Bev > CT

HR = 0.55 (0.44-0.67)

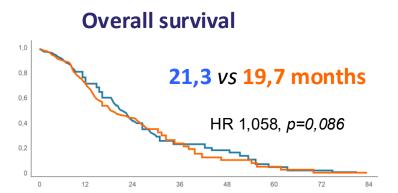
OS: CT + Bev > CT

HR = 0.78 (0.63–0.96)

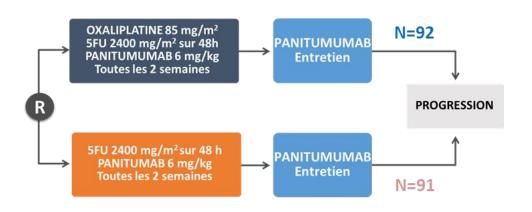
Study or Sub-	Walashi	Odds Ratio	Overall survival	Odds Ratio
Study or Subgroup	Weight	IV, Fixed, 95% CI		IV, Fixed, 95% CI
2.1.1 bevacizumab				
PRODIGE 20	3.2%	0.74 [0.41, 1.34]	·	•
Kabbinavar	7.7%	0.76 [0.52, 1.11]	_	
AVEX	10.4%	0.79 [0.57, 1.09]		-
AGITG MAX	3.9%	0.80 [0.47, 1.36]	\$ 	•
Subtotal (95% CI)	25.1%	0.78 [0.63, 0.96]		
Heterogeneity: Chi ² =	0.06, df = 3	3 (P = 1.00); I ² = 0%		
Test for overall effect:				

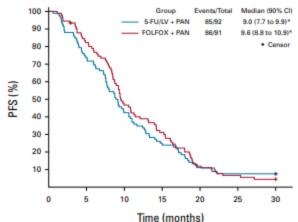

Landré T, Int J Colorectal Dis 2018

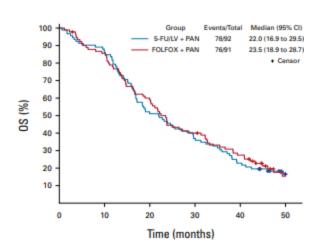
Favors CT+bev


Favors CT

Fluoropyrimidine monotherapie + targeted therapy for older patients


bi-CT + bevacizumab vs mono-CT + bevacizumab




Hamaguchi T, ASCO GI[®] 2022, Abs #10

bi-CT + anti-EGFR vs mono-CT + anti-EGFR

Lonardi S, J Clin Oncol 2023

Conclusion of trials evaluating bevacizumab

- Bevacizumab is efficient in older patients in first line
- The efficacy remains in more frail patients
- Number of patients with cardiovascular disease are excluded
- Underpowered study could not assess heterogeneity of older population
- Concordance of a mini geriatric evaluation by an oncologist and a full geriatric assessment is not fully demonstrated

Regorafenib after 70 years?

FFCD 1404 - REGOLD

Tumor control rate at 2 months: 31,4%

N = 42

Median PFS: 2.2 months

Median OS: 7.5 months

Median age: 77 years

1.9 months in CORRECT study

6.4 months in CORRECT study

37% >80 years

Patients ≥ 80 years vs < 80 years

No tumor control at 2 months OR: 3.21 [IC95%: 0.57; 18.20], p=0,187

Progression free survival HR: 0.60 [IC95%: 0.30 ; 1.17], p=0.134

Overall survival HR: 0,47 [IC95%: 0,23 ; 0, 97], p=0,042

Aparicio T, J Ger Oncol 2020

Treatment stop for toxicity: 28% patients among them 83% ECOG 1, 50% >80 years, 50% impaired ADL

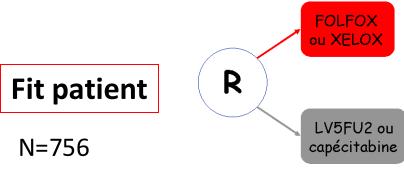
Optimisation of regorafenib schedule

- Start at reduce dose
- Schedule: 2/3 weeks

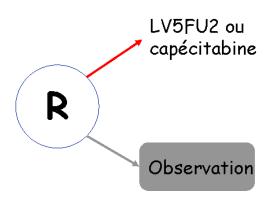
Conclusions

- Regorafenib sems feasible in fit patient <80 years, ECOG=0
- Few results from geriatric assessment due to small number of patient

Petrioli R, Clin Colorectal Cancer 2018 Bekaii-Saab T, Lancet Oncol 2019



Trial in adjuvant setting: PRODIGE 34 - ADAGE trial



Adjuvant in patients >70 ans, stage III, R0

Vulnerable patient

N=226

Stratification: center, sex, stage (IIIA *vs* IIIB *vs* IIIC), occlusion and/or perforation (yes *vs* no) and IADL (normal *vs* anormal)

Eligibility limitations

- ECOG <2,
- Adequate organ and bone marrow function
- No other cancer uncontrolled for less than 2 years

Geriatric parameters mandatory

- G8, Spitzer QoL scale, MMSE, IADL, ADL, mini-GDS, mini-Cog, MNA-SF, RFQ, social support, Lee score
- Geriatrician consultation not mandatory
- Attribution of group by the investigator

Funding: FFCD

PRODIGE 34 – ADAGE: first findings

Preliminary analysis at 50% of inclusion in 491 patients (378 in Group 1 and 113 in Group 2)

Preliminary results for toxicity n=434	Groupe 1 : Fluoropyrimidine, n=189	Groupe 1 : FOLFOX/XELOX, n=189	Groupe 2 : Fluoropyrimidine, n=56
Chemotherapy regimen	LV5FU2:83% Capecitabine:17%	FOLFOX : 89% XELOX : 11%	LV5FU2 : 36% Capecitabine : 64%
Early stop of treatment	17%	21%	38%
Total grade 3-5 toxicities	26%	58%	40%
Neurologic grade 1-2 / 3-4	20% / 1%	87% (21%)	19% / 4%
Neutropenia grade 1-2 / 3-4	18% / 3%	36% (22%)	17% / 6%
Asthenia grade 1-2 / 3-4	59% / 4%	64% / 8%	49% / 11%

- Patients in Group 2 were older and showed more frailty criteria than those in Group 1.
- Cumulative grade 3-5 toxicities were more frequent in patients treated with oxaliplatin in Group 1 or with fluoropyrimidine in Group 2 than in patients treated with fluoropyrimidine in Group 1.
- At least one course was deferred in more than half of the patients in all groups. Early treatment cessation was more frequent in Group 2.

PRODIGE 34 – ADAGE: analysis of toxicity in group 1

10 years accrual Inclusion of 982 patients, 756 in group 1

Multivariate analysis for grade 3-5 toxicity in all patients

	OR [95% CI]	р
Treatment Ox vs F	3.86 [2.80-5.32]	<0.0001
Age: <75 [75-80] >80	Ref 1.64 [1.13-2.39] 1.43 [0.94-2.17]	0.031
Male vs women	0.72 [0.52-0.99]	0.042

- Adjuvant chemotherapy with oxaliplatin is feasible in fit older patients
- Oxaliplatin cause an increase of severe toxicity and a decrease of dose intensity.
- Patients >75 and women are more at risk for toxicity.

Multivariate analysis for grade 3-5 toxicity in Arm F

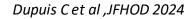
	OR [95% CI]	р
5FU vs capecitabine	0.67 [0.37-1.22]	0.187
Male vs women	0.60 [0.38-0.96]	0.034
Creatinin clearance >45 vs <45 ml/min	0.39 [0.14-1.06]	0.064

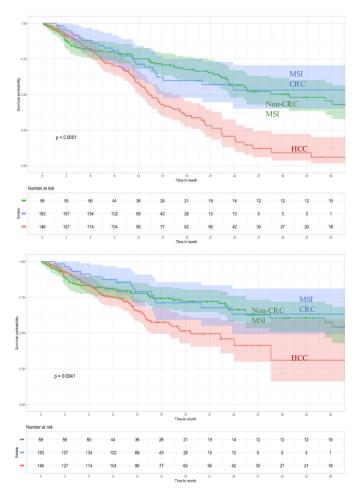
Multivariate analysis for grade 3-5 toxicity in Arm Ox

	OR [95% CI]	р
FOLFOX vs XELOX	1.66 [0.83-3.31]	0.151
Age: <75 [75-80] >80	Ref 2.05 [1.21-3.47] 1.29 [0.70-2.35]	0.025
Cognition Impaired vs normal	1.52 [0.86-2.68]	0.151

New player: immunotherapy in dMMR/MSI

Some concerns for older patients (immunotoxicity and efficacy) but preliminary data from retrospectives study are reassuring


Data from AGEO retrospective study: immunotherapy for digestive cancer in patients over 70


- For MSI MCRC, median OS not reach [IQR 35,3-NR], median PFS: 30.8 months [23.3-49.4].
- For MSI non-CRC, median OS: 75.3 months [23.8-NR] and median PFS: 46.4 months [15.1-NR].
- For HCC, median OS: 18.6 months [13.7-NR] and median PFS: 13.3 moths [12.1-16.2].

Univariate analysis for mortality

	Alive	Death	р
	n = 100	n = 47	
Female sex – n (%)	55 (55.0)	32 (68.1)	0.185
Age category – n (%)			0.356
70-75	29 (31.5)	18 (41.9)	
75-80	29 (31.5)	9 (20.9)	
80+	34 (37.0)	16 (37.2)	
EI ≥ grade 3 – n (%)	18 (18.0)	8 (17.0)	1.000
BMI - median [IQR]	24.4 [22.3 ; 27.5]	22.6 [19.0 ; 25.3]	0.017
BMI <22 – n (%)	22 (22.7)	21 (44.7)	0.012
Albumin <30 g/L – n (%)	13 (16.0)	13 (35.1)	0.037

Denutrition is a major prognostic factor

Conclusions for colorectal cancer in older patients

- Specific trials for older patients are needed
- Poor information from small sample size trial
- Standardized geriatric parameters should be collected to allow meta-analysis
- New endpoint assessing QoL and autonomy could be elaborate but with caution
- Translational study are also needed to assess potential biologic specificity