

Predictive factors for toxicity in Geriatric Oncology: Sarcopenia and mobility indices

Frédéric PAMOUKDJIAN, MD, PhD Associate Professor of Geriatrics Sorbonne Paris Nord University APHP-Avicenne Hospital

The author declares no conflict of interest

Sarcopenia and toxicity

• Sarcopenia was initially defined in 1989 as an <u>age-related loss of muscle mass</u>

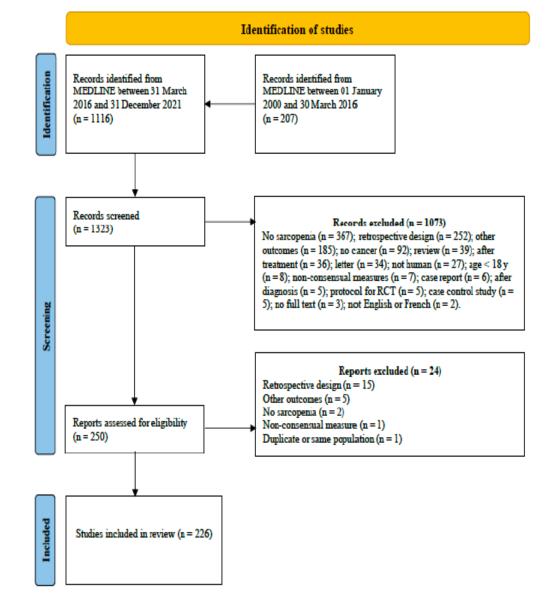
only (Rosenberg IF. J Nutr. 1997 suppl 5)

- Since 2010, the definition has been gradually refined to consensually refer to a syndrome:
 - European Working Group On Sarcopenia (EWGOS) 1 et 2 Cruz-Jentoft AJ et al. Age Ageing, 2010 et 2019
 - International Working Group on Sarcopenia (IWGS) Fielding RA et al. JAMDA, 2011
 - Asian Working Group on Sarcopenia (AWGS) 1 et 2 Chen LK et al. JAMDA, 2014 et 2020

Consensus	Year	Screening			Definition		
Consensus	iear	Screening	Muscle Mass		Muscular Strength	Muscular Performance	
EWGOS 1	2010	No	↓ DXA, BIA, CT or MRI	AND	↓ Hand-grip strength (kg) [M < 30, F < 20]	OR	\downarrow GS < 0.8 m/s or SPPB < 9/12 or TGUG \geq 20 s
IWGS	2011	No	DXA	AND	No	-	\downarrow GS < 1 m/s
AWGS 1	2014	No	\downarrow DXA or BIA	AND	↓ Hand-grip strength (kg) [M < 26, F < 18]	AND	\downarrow GS < 0.8 m/s
EWGOS 2	2019	Yes (SARCF)	↓ DXA, BIA, CT or MRI	AND	↓ Hand-grip strength (kg) [M < 27, F < 16] Or 5 Rising from a chair > 15 s	AND (severity)	\downarrow GS < 0.8 m/s or SPPB < 9/12 or TGUG \geq 20 s
AWGS 2	2019	Yes (SARCF)	\downarrow DXA or BIA	AND	↓ Hand-grip strength (kg) [M < 28, F < 18] 5 Rising from a chair > 12 s	AND (severity)	↓ GS < 1 m/s or SPPB < 9/12

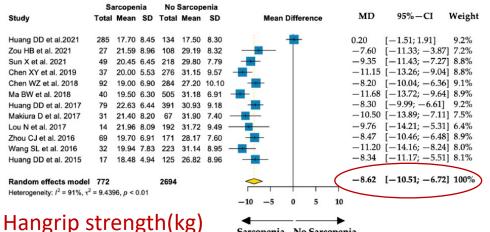
EWGOS: European Working Group On Sarcopenia; IWGS: International Working Group on Sarcopenia; AWGS: Asian Working Group on Sarcopenia; DXA: dual-energy X-ray absorptiometry; BIA: bioelectrical impedance analysis; CT: computed tomography; MRI: magnetic resonance imagery. M: male; F: female. GS: gait speed; SPPB: short physical performance battery; TGUG: timed get up and go test. SARCF: strength, assistance with walking, rise from a chair, climb stairs, and falls. \downarrow : reduced muscle mass; Bold = consensus names, and syndromic combination.

Couderc AL et al. Nutrients; 2023


Systematic Review

Pre-Therapeutic Sarcopenia among Cancer Patients: An Up-to-Date Meta-Analysis of Prevalence and Predictive Value during Cancer Treatment

Anne-Laure Couderc ^{1,2,†,‡}, Evelyne Liuu ^{3,4,†,‡}, Pascaline Boudou-Rouquette ^{5,6,‡}, Johanne Poisson ^{7,8}, Maxime Frelaut ^{9,‡}, Coline Montégut ^{1,10,‡}, Soraya Mebarki ^{7,‡}, Romain Geiss ^{11,‡}, Zoé ap Thomas ¹², Aurélien Noret ⁷, Monica Pierro ⁷, Capucine Baldini ^{13,‡}, Elena Paillaud ^{7,14,‡,§} and Frédéric Pamoukdjian ^{15,16,*,‡,§}


Abstract: This study will address the prevalence of pre-therapeutic sarcopenia (PS) and its clinical impact during cancer treatment among adult cancer patients ≥ 18 years of age. A meta-analysis (MA) with random-effect models was performed via a MEDLINE systematic review, according to the PRISMA statement, focusing on articles published before February 2022 that reported observational studies and clinical trials on the prevalence of PS and the following outcomes: overall survival (OS), progression-free survival (PFS), post-operative complications (POC), toxicities (TOX), and nosocomial infections (NI). A total of 65,936 patients (mean age: 45.7-85 y) with various cancer sites and extensions and various treatment modes were included. Mainly defined by CT scan-based loss of muscle mass only, the pooled prevalence of PS was 38.0%. The pooled relative risks were 1.97, 1.76, 2.70, <u>1.47</u>, and 1.76 for OS, PFS, POC, <u>TOX</u>, and NI, respectively (moderate-to-high heterogeneity, I²: 58-85%). Consensus-based algorithm definitions of sarcopenia, integrating low muscle mass and low levels of muscular strength and/or physical performance, lowered the prevalence (22%) and heterogeneity (I² < 50%). They also increased the predictive values with RRs ranging from 2.31 (OS) to 3.52 (POC). PS among cancer patients is prevalent and strongly associated with poor outcomes during cancer treatment, especially when considering a consensus-based algorithm approach.

- N = 226 articles
- 2008-2022
- <u>65936 patients</u>
 - Mean age = 45-85 ans
 - 17295 ≥ 65y
 - 419 ≥ 75y
- Asian (51%), men (66%), BMI < 30 kg/m²
 (69,5%)
- Various cancer sites (22%), gastric
 (20,5%) or colorectal (17%)
- Surgery (61%), chemotherapy (6%),
 immune-therapy or targeted therapy (1%)

Compared to no sarcopenia, <u>Handgrip strength and gait speed are significantly lower in</u> sarcopenia among cancer patients

Α

Sarcopenia No Sarcopenia

B

Sarcopenia No Sarcope				enia						
Study	Total	Mean	SD	Total	Mean	SD	Mean Difference	MD	95%-CI	Weight
Huang DD et al.2021	285	0.83	0.29	134	0.88	0.29		-0.05	[-0.11; 0.01]	9.9%
Zou HB et al. 2021	27	0.82	0.14	108	1.06	0.20		-0.24	[-0.30; -0.18]	9.4%
Sun X et al. 2021	49	0.83	0.24	218	1.02	0.21		-0.19	[-0.26; -0.12]	8.8%
Chen XY et al. 2019	37	0.81	0.23	276	1.04	0.20		-0.23	[-0.31; -0.15]	8.4%
Chen WZ et al. 2018	92	0.79	0.19	284	0.94	0.18	-	-0.15	[-0.19; -0.11]	11.1%
Ma BW et al. 2018	40	0.87	0.21	505	1.06	0.19			[-0.26; -0.12]	
Huang DD et al. 2017	79	0.87	0.18	391	1.03	0.19			[-0.20; -0.12]	
Makiura D et al. 2017	31	1.00	0.44	67	1.14	0.42				3.2%
Lou N et al. 2017	14	0.72	0.18	192	1.03	0.19			[-0.41; -0.21]	
Zhou CJ et al. 2016	69	0.77	0.20	171	0.97	0.18			[-0.25; -0.15]	
Wang SL et al. 2016	32	0.80	0.38	223	1.05	0.21			[-0.38; -0.12]	
Huang DD et al. 2015	17	0.75	0.21	125	0.97	0.19		-0.22	[-0.33; -0.11]	6.5%
Random effects model Heterogeneity: $I^2 = 68\%$, τ^2		29, p < (0.01	2694			· · · · · · · · · · · · · · · · · · ·	-0.19	[-0.23; -0.15]	100%
-						_	-0.4 -0.2 0 0.2 0.4			
Gait spe	ee	d (m	/s)		←──→			
							Sarcopenia No Sarcopenia			

Pre-therapeutic sarcopenia is significantly associated with severe treatment-related toxicity (≥ Grade 3) and/or dose-limiting toxicity among cancer patients

19 studies, 2980 patients	Study	Sarcopenia Events				Risk Ratio	RR	95%-CI	Weight
- 1172 sarcopenic	Ferini G et al. 2021 Lee CH et al. 2021 Takeda T et al. 2021	2 8 12	8 41 61	6 3 4	20 37 19		0.83 2.41 0.93	[0.21; 3.29] [0.69; 8.40] [0.34; 2.56]	2.0% 2.3% 3.1%
- 1808 no sarcopenic	Xu YY et al. 2021 Huang CH et al. 2020 Jin K et al. 2020	34 59 3	94 65 57	19 14 2	90 42 62		1.71 2.72 1.63	[0.28; 9.41]	5.9% 6.2% 1.4%
RR = 1.47 [1.17-1.85]	Ueno A et al. 2020 Yu J II et al. 2020 van Rijn-Dekker MI et al. 2020 Huillard O et al. 2019 Darie CM et al. 2010	48	10 75 189 89	16 165 35 41	72 383 561 91 30		0.96 2.20 1.20	[1.74; 5.70] [0.72; 1.29] [1.36; 3.56] [0.89; 1.61]	5.2% 7.1% 5.9% 7.1%
(moderate heterogeneity: I ² = 71%)	Panje CM et al. 2019 Sasaki S et al. 2019 Kurita Y et al. 2018 Williams GR et al. 2018	15 76 40 6	31 135 42 12	22 48 21 5	84 40 13		0.66 0.99 1.81 1.30	[0.43; 1.01] [0.78; 1.25] [1.34; 2.45] [0.53; 3.17]	6.3% 7.4% 7.1% 3.6%
No studies using consensual algorithms	Sato S et al. 2018 Heidelberger V et al. 2017 Wendrich AW et al. 2017 Miyata H et al. 2016 Tan BH et al. 2014 Huillard O et al. 2013	5 6 27 21 24 12	34 34 61 44 44 32	3 5 7 29 13 6	14 34 51 50 45 29		0.69 1.20 3.22 0.82 1.89 1.81		2.2% 2.8% 4.3% 6.5% 5.6% 3.8%
Homogeneity regarding chemotherapy	Prado CM et al. 2009	7	14	8	41			[1.14; 5.78]	
(RR = 1.98 [1.55-2.54]), and targeted therapy	Random effects model Heterogeneity: $l^2 = 71\%$, $\tau^2 = 0.16$		1172		1808		1.47	[1.17; 1.85]	100.0%
(RR = 1.63 [1.05-2.54]) in breast or head-and-						0.2 0.5 1 2 5			

neck cancers ($I^2 < 50\%$)

...and next ?

<u>Pre-therapeutic sarcopenia</u> defined as a loss of muscle mass only was significantly associated with ≥ Grade 3 endocrine-therapy toxicity in non metastatic breast cancer (mean age = 61y) (G.F. Pereira Aleixo et al. Breast Cancer Res Treat; 2022)

Mobility indices and toxicity

- PubMed database search (May 2023)
- <u>Research algorithm: (gait speed OR short physical performance battery OR</u>

timed get up and go test OR handgrip strength OR one leg stance balance)

AND older adults AND cancer AND toxicity

• N = 26 articles

Table 1Baseline Characteristics (N = 30).

Covariate	N (%)
Age	78.1 ± 6.4 ^a
Gender Male Female	13 (43) 17 (57)
Cancer subtype Diffuse-large B cell CLL/SLL Follicular Low-grade B-cell Hodgkin's T-cell	17 (57) 6 (20) 2 (7) 2 (7) 2 (7) 2 (7) 1 (3)
Stage I/II III/IV Unknown	8 (27) 19 (63) 3 (10)
Chemotherapy regimen R-CHOP BR ABVD CHOP FCR CHLO + OBIN Brentuximab, bendamustine	18 (60) 7 (23) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3) 1 (3)
Charlson comorbidity index <3 3-4 ≥5	18 (60) 9 (30) 3 (10)

Abbreviations: ABVD = doxorubicin, bleomycin, vinblastine, dacarbazine; BR = bendamustine, rituximab; CHLO + OBIN = chlorambucil, obinutuzumab; CLL = Chronic lymphocytic leukemia; FCR = fludarabine, cyclophosphamide, rituximab; R-CHOP = rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone; SLL = Small lymphocytic leukemia. ^a Data presented as mean ± SD.

Predicting the Risks of Aggressive-Intent Chemotherapy Toxicity in Older Patients With Lymphoma: A Prospective Observational Pilot Study

Vinita Dhir,¹ Manjula Maganti,² Dmitry Rozenberg,³ Vishal Kukreti,¹ John Kuruvilla, ¹ Michael Crump,¹ Anca Prica, MD, MSc, FRCPC¹

Abstract

In this prospective cohort study, thirty patients 70 years or older with lymphoma were recruited to assess the feasibility of different tests and models to predict chemotherapy-related adverse events. The results suggest the Clinical Frailty Scale shows promising utility, and this relatively easy test can be administered in an outpatient clinic to help older adults and clinicians with chemotherapy decision-making. Introduction: Lymphoma is a disease of older patients and while treatment is subtype specific, curative or aggressive intent combination chemotherapy is often recommended. However, there has been limited evidence on which to base treatment decisions for older adults. Our objectives were to assess the utility of risk stratification measures and serial functional tests in predicting chemotherapy toxicity and as well the feasibility of conducting these in older adults undergoing chemotherapy for lymphoproliferative disorders. Materials and Methods: This prospective cohort study recruited lymphoma patients 70 years or older planned for systemic chemotherapy. The Cancer and Aging Research Group (CARG) risk stratification tool and Chemotherapy Risk Assessment Scale for High-Age Patients (CRASH) were calculated at baseline. The Clinical Frailty Scale (CFS), Charlson Comorbidity Index score, grip strength and gait speed test, and toxicity events, were assessed at baseline and serially throughout treatment. Sarcopenia was calculated on CT scans at baseline, midway through treatment, and 1-month after completion of therapy. The primary endpoint was to assess the feasibility of applying these measures in busy ambulatory clinics. These measures were also correlated with clinical outcomes including >grade 3 adverse events (AEs), hospitalizations and emergency department visits, dose changes or delays, and overall survival. Results: In total, 30 patients were enrolled (mean age 78.1 ± 6.4 years), of whom 20 were treated with curative intent. A total of 16 patients (53%) experienced grade ≥3 AEs, 9 (56%) of which led to a chemotherapy delay. On univariable analyses, CFS score, a high CARG score, medium to high CRASH score, and the gait speed were associated with grade >3 AEs, while only CFS remained significant on multivariable analysis. On univariable analysis, patients with a medium to high risk CRASH score were more likely than low risk patients to have an unplanned emergency department visit or hospitalization. Conclusions: The CFS seems to predict toxicity in this cohort study, with gait speed, CARG and CRASH scores being potentially additional predictive methods of evaluation.

Clinical Lymphoma, Myeloma and Leukemia, Vol. 22, No. 8, e792–e803 © 2022 Elsevier Inc. All rights reserved. Keywords: Aging, Frailty, Geriatric oncology, Physical performance testing, Lymphoma

Canada, 2022

Table 3 Univariable GEE Regression Analysis Results for Grade ≥3 Toxicity. Boldface indicates statistically significant p-values.

Covariate	N (%)	Patients With Grade ≥3 AEs (%)	OR (95% CI)	P-value
CARG risk score				
Low (0-5) Intermediate (6-9) High (10-19)	5 (17) 18 (60) 7 (23)	1 (20) 8 (44) 4 (57)	Reference 5.99 (0.89, 40.23) 10.05 (1.33, 75.6)	.065 .025
CRASH risk score				
Low to medium: 0 to 6	13 (43)	1 (8)	Reference	
Medium to High: 7 to >9	17 (57)	12 (71)	3.32 (1.24, 8.94)	.017
CFS scale <4 ≥4	23 (77) 7 (23)	8 (35) 5 (71)	Reference 7.45 (1.85-23.9)	.005
Grip strength (lbs)	-	-	1.00 (0.85,1.18)	.976
4-metre gait speed	-	-	0.90 (0.83, 0.99)	.02
Sarcopenia at baseline				
No	8 (38)	2 (29)	Reference	
Yes	13 (62)	5 (71)	2.17 (0.49, 9.53)	.303
CCI	-	-	1.27 (0.98,1.65)	.069

Abbreviations: AEs = adverse events; CARG = Cancer and Aging Research Group; CCI = Charlson Comorbidity Index; CFS = Clinical Frailty Scale; CRASH = Chemotherapy Risk Assessment Scale for High-Age Patients; GEE = Generalized estimating equations.

Table 1. Baseline characteristics of the study cohort (N = 105)

Characteristic	No.	%	Median (range)
Age at diagnosis, y			64 (60-75)
60-64	54	51.4	
65-70	37	35.3	
71-75	14	13.3	
Sex			
Male	65	61.9	
Female	40	38.1	
AML disease type			
De novo	73	69.5	
Secondary	32	30.5	

CLINICAL TRIALS AND OBSERVATIONS

CME Article

EY POINTS

Geriatric assessment predicts nonfatal toxicities and survival for intensively treated older adults with AML

Gi-June Min,^{1,2} Byung-Sik Cho,^{1,2} Sung-Soo Park,^{1,2} Silvia Park,^{1,2} Young-Woo Jeon,³ Seung-Hwan Shin,⁴ Seung-Ah Yahng,⁵ Jae-Ho Yoon,^{1,2} Sung-Eun Lee,^{1,2} Ki-Seong Eom,^{1,2} Yoo-Jin Kim,^{1,2} Seok Lee,^{1,2} Chang-Ki Min,^{1,2} Seok-Goo Cho,¹ Dong-Wook Kim,^{1,2} Jong Wook Lee,¹ and Hee-Je Kim^{1,2}

¹Department of Hematology, Catholic Hematology Hospital, Seoul St Mary's Hospital, ²Leukemia Research Institute, ³Department of Hematology, Yeouido St Mary's Hospital, ⁴Department of Hematology, Europeong St Mary's Hospital, and ⁵Department of Hematology, Incheon St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Given that there are only a few prospective studies with conflicting results, we investigated GA focusing on physical the prognostic value of multiparameter geriatric assessment (GA) domains on tolerance and outcomes after intensive chemotherapy in older adults with acute myeloid leukemia (AML). function and depression improves the power of In all, 105 newly diagnosed patients with AML who were older than age 60 years and who survival prediction received intensive chemotherapy consisting of cytarabine and idarubicin were enrolled models for older patients with AML. prospectively. Pretreatment GA included evaluations for social and nutritional support, cognition, depression, distress, and physical function. The median age was 64 years (range, Cognitive and physical 60-75 years), and 93% had an Eastern Cooperative Oncology Group performance score <2. impairments are associated with Between 32.4% and 69.5% of patients met the criteria for impairment for each domain of nonfatal toxicities GA. Physical impairment by the Short Physical Performance Battery (SPPB) and cognitive during induction dysfunction by the Mini-Mental State Examination in the Korean version of the Consortium chemotherapy in older to Establish a Registry for Alzheimer's Disease (CERAD) Assessment Packet (MMSE-KC) patients with AML. were significantly associated with nonfatal toxicities, including grade 3 to 4 infections

(SPPB, P = .024; MMSE-KC, P = .044), acute renal failure (SPPB, P = .013), and/or prolonged hospitalization (≥40 days) during induction chemotherapy (MMSE-KC, P = .005). Reduced physical function by SPPB and depressive symptoms by the Korean version of the short form of geriatric depression scales (SGDS-K) were significantly associated with inferior survival (SPPB, P = .027; SGDS-K, P = .048). Gait speed and sit-and-stand speed were the most powerful measurements for predicting survival outcomes. Notably, the addition of SPPB and SGDS-K, gait speed and SGDS-K, or sit-and-stand speed and SGDS-K significantly improved the power of existing survival prediction models. In conclusion, GA improved risk stratification for treatment decisions and may inform interventions to improve outcomes for older adults with AML. This study was registered at the Clinical Research Information Service as #KCT0002172.

Blood[®] 17 MARCH 2022 | VOLUME 139, NUMBER 11

Infection (Grade 3-4)			
	Impaired SPPB -	; *	OR 3.0 (95% Cl, 1.2-7.8) P=0.024
Model #1	Impaired HCT-CI -		OR 1.3 (95% CI, 0.5–3.9) P=0.599
incuci i i	Impaired ECOG-PS -	↓↓	OR 1.1 (95% CI, 0.2-6.3) P=0.949
	Age ≥65 -	⊢	OR 1.2 (95% CI, 0.6-2.8) P=0.674
	Impaired MMSE-KC -	*	OR 2.7 (95% CI, 1.0-6.9) P=0.044
Model #2	Impaired HCT-CI -		OR 1.8 (95% CI, 0.6-5.1) P=0.274
Wodel #2	Impaired ECOG-PS -	├ ──── │	OR 0.9 (95% CI, 0.2-5.9) P=0.998
	Age ≥65 -	├ ── │	OR 1.2 (95% CI, 0.5-2.9) P=0.609
	Impaired K-IADL -	⊢ •	OR 2.7 (95% CI, 0.9-7.3) P=0.054
Model #3	Impaired HCT-CI -		OR 1.7 (95% CI, 0.6-4.9) P=0.314
	Impaired ECOG-PS -	├ ───┤	OR 1.2 (95% CI, 0.2-7.0) P=0.836
	Age ≥65 -		OR 1.3 (95% CI, 0.6-3.1) P=0.501
AKI (Grade 3-4)	Impaired SPPB -		OR 3.9 (95% CI, 1.3–11.4) P=0.013
	Impaired HCT-CI -		OR 0.5 (95% Cl, 0.1–2.1) P=0.378
	Impaired ECOG-PS -	¦⊢ ∗	OR 6.4 (95% CI, 1.2-34.3) P=0.031
	Age ≥65 -		OR 0.5 (95% Cl, 0.2-1.5) P=0.211

Korea, 2022

Acute kidney Injury

Variables	Total	Clinical Nutrition 40 (2021) 295-302	
No. patients Cancer stage, n (%)	82 25	Contents lists available at ScienceDirect Clinical Nutrition	
III IVA Treatment regimen, n(%) CCRT CCRT + anti-EGFR agents Sarcopenia, n (%)	45 12 69 13 37	Original article Is skeletal muscle loss associated with chemoradiotherapy toxicity in nasopharyngeal carcinoma patients? A prospective study Xiao Huang ^a , Li-Na Lv ^b , Yang Zhao ^c , Ling Li ^a , Xiao-Dong Zhu ^{a,*}	China, 2021
Patient characteristics Age, years BSA, m ² BMI, kg/m ² WHR SMD, HU SMA, cm ² SMG, AU estimate LBM, kg HGS, kg Incidence of grade 3–4 toxicity Leukopenia Neutropenia Neutropenia Nausea Vomiting Oral mucositis Radiation dermatitis DLT	$\begin{array}{c} 45.7 \pm 10.7 \\ 1.662 \pm 0.157 \\ 23.0 \pm 2.8 \\ 0.90 \pm 0.06 \\ 55.0 \pm 8.0 \\ 109.3 \pm 26.7 \\ 41.0 \pm 8.6 \\ 2263.9 \pm 604.7 \\ 38.9 \pm 8.0 \\ 38.8 \pm 9.2 \\ \end{array}$ $\begin{array}{c} 25 (30.5\%) \\ 14 (17.1\%) \\ 6 (7.3\%) \\ 5 (6.1\%) \\ 15 (18.3\%) \\ 5 (6.1\%) \\ 27 (32.9\%) \end{array}$	^a Peartment of Radiology, Guangel Medical University Cancer Hospital, Naming, Cangui, China CALL, Cancer Can	

Table 3

Multivariate analysis of association between severe toxicity with different muscle measurements,

Variables	Entire cohort (n – 82	Males (n - 55)	Males (n – 55)					
	Any Grade 3/4 toxicity		Nausea		Leukopenia		DLT	
	OR (95%CI)	p	OR (95%CI)	р	OR (95%CI)	р	OR (95%CI)	р
Sarcopenia							4,00 (1,20-13,36)	0.024
HGS (1 kg increase)	0.94 (0.89-0.99)	0,013			0.92 (0.86-0.98)	0.007		
SMD (THU increase)			0.86 (0.76-0.97)	0.011				
SMA (1 cm ² increase)	0,98 (0,96-1,00)	0.032					0.97 (0.94-1.00)	0.04
SMI (1 cm ² /m ² increase)							0.91 (0.84-0.99)	0.04
LBM (1 kg increase)	0.94 (0.88-1.00)	0.033					0.90 (0.81-0.99)	0.04

NOTE: Adjusted for age and cancer stage,

BMC Cancer

RESEARCH ARTICLE

Open Access

France, 2018

Dynapenia could predict chemotherapyinduced dose-limiting neurotoxicity in digestive cancer patients

Damien Botsen^{1*}⁽¹⁾, Marie-Amélie Ordan¹, Coralie Barbe², Camille Mazza¹, Marine Perrier¹, Johanna Moreau^{1,3}, Mathilde Brasseur^{1,3}, Yohann Renard⁴, Barbara Taillière⁵, Florian Slimano¹, Eric Bertin⁶ and Olivier Bouché^{1,3}

Abstract

Background: FIGHTDIGO study showed the feasibility and acceptability of handgrip strength (HGS) measure in routine in 201 consecutive patients with digestive cancer treated with ambulatory chemotherapy. The present study focuses on the second aim of FIGHTDIGO study: the relationships between pre-therapeutic dynapenia and chemotherapy-induced Dose-Limiting Toxicities (DLT).

Methods: In this ancillary prospective study, DLT were analyzed in a sub-group of 45 chemotherapy-naive patients. Two bilateral consecutive measures of HGS were performed with a Jamar dynamometer before the first cycle of chemotherapy. Dynapenia was defined as HGS < 30 kg (men) and < 20 kg (women). DLT and/or Dose-Limiting Neurotoxicity (DLN) were defined as any toxicity leading to dose reduction, treatment delays or permanent treatment discontinuation.

Results: Two-thirds of chemotherapies were potentially neurotoxic (n = 31 [68.7%]) and 22 patients (48.9%) received FOLFOX (SFU, leucovorin plus oxaliplatin) regimen chemotherapy. Eleven patients (24.4%) had pre-therapeutic dynapenia. The median number of chemotherapy cycles was 10 with a median follow-up of 167 days. Twenty-two patients experienced DLT (48.9%). There was no significant association between pre-therapeutic dynapenia and DLT (p = 0.62). Nineteen patients (42.2%) experienced DLN. In multivariate analysis, dynapenia and tumoral location (stomach, biliary tract or small intestine) were independent risk factors for DLN (HR = 3.5 [1.3; 9.8]; p = 0.02 and HR = 3.6 [1.3; 10.0]; p = 0.01, respectively).

Conclusions: Digestive cancer patients with pre-therapeutic dynapenia seemed to experience more DLN. HGS routine measurement may be a way to screen patients with frailty marker (dynapenia) who would require chemotherapy dose adjustment and adapted physical activity programs.

Trial registration: NCT02797197 June 13, 2016 retrospectively registered.

Keywords: Dynapenia, Antineoplastic agents, Digestive system neoplasms, Sarcopenia, Dose-limiting toxicity, Muscle strength

Table 1 Baseline characteristics (n = 45)		Table
Characteristics ^a	Value	
Age, mean ± SD	66.2 ± 12.3	Chara
Sex		Neuro
Male	21 (46.7)	
Female	24 (53.3)	Biothe
Body Mass Index, mean \pm SD, kg/m ²	23.2 ± 4.1	BEV
BMI categories, No. (%)		DLV
Malnutrition ^b	7 (15.6)	CET
Normal	24 (53.3)	
Overweight ^c	14 (31.1)	Dynap
ECOG PS, No. (%)		
0	12 (26.7)	Table
1	31 (68.9)	Charact
2	2 (4.4)	
mGPS ^d , No. (%)		Marian
0	17 (43.6)	Maximu
1	17(43.6)	Dynape
2	5 (12.8)	No
Hospitalizations number, median [range]	10 [0-18]	Ver
Follow-up, median [range], days	167 [0–189	Yes
Primary tumor location, No. (%)		Age, m
Colon and rectum	22 (48.9)	ECOG P
Esophagus	3 (6.7)	0
Stomach	5 (11.1)	0
Biliary tract	1 (2.2)	1 or .
Pancreas	9 (20.0)	mGPS ¹
Small intestine	1 (2.2)	
Neuroendocrine tumor	2 (4.4)	0
Unknown	2 (4.4)	1
Stage, No. (%)		2
Local	20 (44.4)	Primary
Locally advanced	6 (13.3)	rninary
Metastatic	19 (42.2)	Stom
Type of treatment, No. (%)		Othe
Chemotherapy	38 (84.4)	Stage
Chemotherapy and biotherapy	7 (15.6)	
Chemotherapy protocol, No. (%)		Loca
5FU + OXALIPLATIN	22 (48.9)	Loca
5FU + IRINOTECAN + OXALIPLATIN	7 (15.6)	Meta
5FU alone	6 (13.3)	
GEMCITABINE	5 (11.1)	BMI, me
5FU-DACARBAZINE	2 (4.4)	Overwe
5FU + IRINOTECAN	1 (2.2)	Yes
GEMCITABINE + OXALIPLATIN	1 (2.2)	
VP16 + CISPLATINE	1 (2.2)	No

Table 1 Baseline characteristics (n = 45) (Continued)CharacteristicsaValueNeurotoxic chemotherapy e, No. (%)31 (68.9)Biotherapy protocol, No. (%)6/7 (85.7)BEVACIZUMAB6/7 (85.7)CETUXIMAB1/7 (14.3)Dynapenia, No. (%)11 (24.4)

Table 3 Factors associated with chemotherapy-induced Dose-Limiting Neurotoxicity (DLN)

Characteristics*	DLNs	No DLN	Univariate analysis	Multivariate analysis ^d		
	(n = 19)	(n = 26)	p value	HR [95% CI]	p value	
Maximum handgrip strength, mean ± SD	29.1 ± 10.3	28.5 ± 9.1	0.64			
Dynapenia			0.13		0.02	
No	12 (63.2)	22 (84.6)		1		
Yes	7 (36.8)	4 (15.4)		3.5 [1.3; 9.8]		
Age, mean ± SD	659±11.5	66.5 ± 13.1	0.89			
ECOG PS			0.04		0.03	
0	8 (42.1)	4 (15.4)		1		
1 or 2	11 (579)	22 (84.6)		0.4 [0.2; 0.9]		
mGPS ^b			0.39			
0	8 (50.0)	9 (39.1)				
1	8 (50.0)	9 (39.1)				
2	0 (0.0)	2 (21.7)				
Primary Tumor location			0.02		0.01	
Stomach – Biliary tract – Small Intestine	6 (31.6)	1 (4.2)		3.6 [1.3; 10.0]		
Other location	13 (68.4)	23 (95.8)		1		
Stage			0.49			
Local	10 (52.6)	10 (38.5)				
Locally advanced	1 (5.3)	5 (192)				
Metastatic	8 (42.1)	11 (42.3)				
BMI, mean ± SD, kg/m2	239±34	228 ± 45	0.048			
Overweight, No. (%) ^c			0.02			
Yes	9 (47.4)	5 (192)				
No	10 (52.6)	21 (80.8)				

Conclusions

- Pre-therapeutic <u>sarcopenia and/or impaired mobility indices</u> (slow gait speed, low SPPB or low handgrip strength) are consistently associated with ≥ Grade 3 <u>treatment-</u> <u>related toxicity</u> among older adults with cancer.
- These associations are closely linked to the frailty
- There is an urgent need to <u>agree on an operational definition</u> of sarcopenia and on the optimal mobility index to use for:
 - Clinical practice (early screening for early functional rehabilitation)
 - <u>Clinical research</u> (encourage the use of sarcopenia and/or mobility indices as stratification variables in the development of future clinical trials in geriatric oncology)
 - Improve study comparability

Thanks for your attention